Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Organ transplantation remains the only treatment option for patients with end-stage organ failure. The last decade has seen a flurry of activity in improving organ preservation technologies, which promise to increase utilization in a dramatic fashion. They also bring the promise of extending the preservation duration significantly, which opens the doors to sharing organs across local and international boundaries and transforms the field. In this work, we review the recent literature on machine perfusion of livers across various protocols in development and clinical use, in the context of extending the preservation duration. We then review the next generation of technologies that have the potential to further extend the limits and open the door to banking organs, including supercooling, partial freezing, and nanowarming, and outline the opportunities arising in the field for researchers in the short and long term.more » « less
-
Abstract Purpose of the ReviewThe current lack of objective and quantitative assessment techniques to determine cardiac graft relative viability results in risk-averse decision-making, which negatively impact the utilization of cardiac grafts. The purpose of this review is to highlight the current deficiencies in cardiac allograft assessment before focusing on novel cardiac assessment techniques that exploit conventional and emerging imaging modalities, including ultrasound, magnetic resonance, and spectroscopy. Recent FindingsExtensive work is ongoing by the scientific community to identify improved objective metrics and tools for cardiac graft assessment, with the goal to safely increasing the number and proportion of hearts accepted for transplantation. SummaryThis review briefly discusses the in situ and ex vivo tools currently available for clinical organ assessment, before focusing on the individual capabilities of ultrasound, magnetic resonance, and spectroscopy to provide insightful, non-invasive information regarding cardiac graft functional and metabolic status that may be used to predict outcome after transplantation.more » « less
-
Abstract Banking cryopreserved organs could transform transplantation into a planned procedure that more equitably reaches patients regardless of geographical and time constraints. Previous organ cryopreservation attempts have failed primarily due to ice formation, but a promising alternative is vitrification, or the rapid cooling of organs to a stable, ice-free, glass-like state. However, rewarming of vitrified organs can similarly fail due to ice crystallization if rewarming is too slow or cracking from thermal stress if rewarming is not uniform. Here we use “nanowarming,” which employs alternating magnetic fields to heat nanoparticles within the organ vasculature, to achieve both rapid and uniform warming, after which the nanoparticles are removed by perfusion. We show that vitrified kidneys can be cryogenically stored (up to 100 days) and successfully recovered by nanowarming to allow transplantation and restore life-sustaining full renal function in nephrectomized recipients in a male rat model. Scaling this technology may one day enable organ banking for improved transplantation.more » « less
An official website of the United States government
